Q442-01 Which of the following is correct about the energy changes during bond breaking and bond formation?

bond breaking	bond formation
A. exothermic	endothermic
B. exothermic	exothermic
C. endothermic	exothermic
D. endothermic	endothermic

Q442-02 Which statement about bond enthalpies is correct?

- A. Bond enthalpies have positive values for strong bonds and negative values for weak bonds
- B. Bond enthalpy values are greater for ionic bonds than for covalent bonds
- C. Bond breaking is endothermic and bond making is exothermic
- D. The carbon-carbon bond enthalpy values are the same in ethane and ethene.

Q442-03 The average bond enthalpy of the C- H bond is 412 kJ mol⁻¹. Which process has an enthalpy change closest to this value?

- A. $CH_4(g) \longrightarrow C(s) + 2H_2(g)$ B. $CH_4(g) \longrightarrow C(g) + 2H_2(g)$ C. $CH_4(g) \longrightarrow C(s) + 4H(g)$ D. $CH_4(g) \longrightarrow CH_3(g) + H(g)$

Q442-04 What energy changes occur when chemical bonds are formed and broken?

- A. Energy is absorbed when bonds are formed and when they are broken
- B. Energy is released when bonds are formed and when they are broken
- C. Energy is absorbed when bonds are formed and released when they are broken
- D. Energy is released when bonds are formed and absorbed when they are broken

Q442-05 What is the value of ΔH in kJ mol⁻¹ for the reaction below?

 $CH_2=CH_2 + H_2 \longrightarrow CH_3CH_3$

	Bond	H-H	C-C	C=C	C-H
	bond energies / kJ mol ⁻¹	436	348	612	412
A. 124					
B. 101					
C101					
D124					

Q442-06 Some average bond enthalpies in kJ mol⁻¹ are as follows: H - H = 436, Cl - Cl = 242, H- Cl = 431

2HCl \rightarrow H₂ + Cl₂

What is the enthalpy change (in kJ) for the decomposition of hydrogen chloride?

- A. -184
- B. +184
- C. +247

D. -247 Q442-07 Given the following data:

$C(s) + 2F_2(g) \longrightarrow CF_4(g);$	H ₁ = -680 kJmol ⁻¹
$F_2(g) \longrightarrow 2F(g);$	H ₂ = +158 kJmol ⁻¹
$C(s) \longrightarrow C(g);$	H ₃ = +715 kJmol ⁻¹

Calculate the average bond enthalpy (in kJmol⁻¹) for the C-F bond. [4]

Q442-08 The average bond enthalpies for O-O and O=O are 146 and 496 kJ mol⁻¹ respectively. What is the enthalpy change in kJ for the reaction below?

H-O-O-H (g) → H-O-H(g) + ½O=O(g)

A. -102 B. +102

C. +350

D. +394

Q442-09 Consider the following reaction: $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$

ΔH[⊕] = ?

Bond enthalpies (in kJ mol⁻¹) involved in the reaction are:

N≡N	Х
H - H	У
N - H	z

Which calculation will give the value of ΔH^{\bullet} ?

A. x + 3y - 6z B. 6z - x + 3y C. x - 3y + 6z

D. x + 3y - 2z

Q442-10 Enthalpy change may be calculated using bond enthalpies, some values of which (in kJmol⁻¹) are provided below:

С=С 612; С-Н 412; О-Н 463; С=О 743; О=О 496.

The balanced equation for the complete combustion of one mole of ethene, C₂H₄, in oxygen is shown below. Use this data to calculate the enthalpy of combustion of ethene:

 $C_2H_4(g) + 3O_2(g) \longrightarrow 2CO_2 + 2H_2O(g)$